Purpose

Aim of this study was the detailed assessment of the LV function with 3DST after prolonged and strenuous exercise.

Methods

We analyzed LV function of 60 healthy male runners (baseline characteristics are shown in Table 1) with 3-dimensional echocardiography one week before (V1), and 0 (V2), 24 (V3), and 72 (V4) hours after the race. We analyzed the captured loops offline with a new software tool ‘Tomtec 4D LV-Function’. This tool allows us to analyze ejection fraction (EF), global longitudinal strain (GLS) and maximum rotation (twist=sum of the rotation of the basal and apical LV plane) 3-dimensionally. Furthermore, we also assessed the new parameters of LV dyssynchrony (systolic dyssynchrony index (SDI) I & II). Additionally, ratio of systolic blood pressure to end-systolic volume (SBP/ESV) was calculated as an index of contractility.

Results

“Conventional” echocardiographic parameters are shown in Table 2. The increase of the twist within the first 24 hrs post-race resulted primarily in the increase of the rotation of the basal LV-plane (V1: 6.1±2.1° vs. V2: 7.8±2.8°, p<0.001) whereas the rotation of the apical plane was less pronounced (V2: 9.5±3.5° vs. V3: 18.5±3.8°, p=0.05). Measures of LV dyssynchrony were shown in Figure 1.

Conclusions

Marathon running results in an increase LV-twist immediately post-race mainly due to increased rotation of the basal plane. Furthermore, intraventricular LV dyssynchrony was increased.